
Chapter N

TRANSFORMING USABILITY ENGINEERING
REQUIREMENTS INTO SOFTWARE
ENGINEERING SPECIFICATIONS
From PUF to UML

Jim A. Carter, Jun Liu, Kevin Schneider, David Fourney
University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Abstract: The Unified Modeling Language (UML) is widely used by
Software Engineers as the basis of analysis and design in software
development. While UML is very strong at specifying the structure and
functionality of the application, it is seldom used to its potential to specify
usability-related information. The Putting Usability First (P U F)
methodology of Usability Engineering identifies and specifies usability-
related information. This chapter discusses how requirements and other
contextual information from the PUF methodology can be transformed into
UML in order to specify the context information of the application to ensure
the usability of the application.

Key words: integration, requirements, software engineering, specifications, unified
usability engineering

1. INTRODUCTION

While the need for integrating human factors with software engineering
[4, 12] has been recognized for over a decade, the reality has yet to happen
to any realistic extent. Attempts to integrate human-computer interaction /
usability engineering with software engineering rely on their acceptance by
software engineers, who control most development projects. This is largely
dependent on the impact of any proposed additions to the current software
engineering practice.

2 Chapter N

This has not taken place in the process realm, where the 32 software
engineering processes defined in ISO TR 15504 [18] failed to include any
human-computer interaction processes. To meet this omission, software
ergonomists developed ISO TR 18529 [15] which defined 43 additional
human-system life cycle processes. Considering that ISO TR 15504 expects
each of these processes to be evaluated in terms of 26 generic practices, this
could result in 1,950 sub-processes.

The goal of integration is to improve the resulting system. Rather than
focus on processes, our approach involves integrating the documentation
used to develop this resulting system.

Our starting point is a set of usability engineering requirements
developed by the Putting Usability First (PUF) methodology [3]. PUF is a
user-centered approach to systems development. It identifies and structures a
use model based on an interrelated set of task, user, content, tool and
scenario descriptions. These descriptions provide a context of use
description, as recommended by ISO 13407 Human Centered Design
Processes for Interactive Systems [16] that can easily be used to integrate
usability concerns within other software development activities.

Our target is a set of software engineering specifications expressed by the
Unified Modeling Language (UML) [1], which are currently pervasive
throughout major software developments. By assisting in developing UML
specifications, it is anticipated that PUF can gain greater acceptance from
software engineers than previous usability engineering methodologies.
Applying the PUF methodology in UML can ensure the application is
developed in a context rich information environment that minimizes the
occurrence of usability problems.

The transformations of usability requirements to software engineering
specifications, which we identify in this paper, allow usability engineers and
software engineers to perform their own processes in their own manners
while being able to better integrate their efforts.

2. THE PUTTING USABILITY FIRST (PUF)
METHODOLOGY

Putting Usability First (PUF) is a usability engineering methodology that
has evolved from previous work on Multi-Oriented Task Analysis (MOST)

N. Transforming usability engineering requirements into software
engineering specifications

3

[4, 5]. It has been applied to a variety of application areas including: e-
Commerce [2] and educational multimedia [6].

The concept behind PUF is that for a usability engineering methodology
to succeed, it must be usable by developers as well as result in a usable
system for end users. ISO 9241-11 Guidance on Usability [17] defines
usability as “the extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use”. PUF involves a thorough consideration of usability
issues in each activity of the development life cycle. Being thorough does
not require following a single formalized highly prescriptive approach to
usability. Rather, it recognizes all development decisions should be based on
usability evaluations. These usability evaluations provide qualitative and
quantitative information that can guide the development process.

Effectiveness is defined as, “the accuracy and completeness with which
users achieve specified goals” [17]. PUF structures requirements to assist
developers in accurately and completely identifying specific user groups,
tasks, content types, tools and scenarios that provide the context of use for
the new system being developed.

Efficiency is defined as, “the resources expended in relation to the
accuracy and completeness with which users achieve goals” [17]. The PUF
methodology recognizes the usefulness of a number of usability methods and
allows developers the flexibility to choose those methods that are most
efficient within a particular context of use. PUF provides the developers with
guidance and flexibility in choosing between the usability methods identified
in ISO 16982 Usability Methods Supporting Human Centered Design [14]
that may be used to identify usability requirements, including user, task,
environment, and system related characteristics and/or to evaluate a system
or a model of a system to assess usability characteristics.

Satisfaction is defined as, “positive attitudes to the use of the product
and freedom from discomfort in using it” [17]. PUF enhances satisfaction for
developers by supporting the integration of usability engineering and
software engineering activities and specifications.

PUF recognizes that for many applications it is impractical to try and
develop the perfect system all at once. Development is often spread across a
series of different releases. PUF supports release-based development in its
inclusion of possibilities in its analysis of the environment of current

4 Chapter N

development. Iteration is crucial in allowing release-based development to
respond to changing needs as well as to needs previously identified. This
iteration involves ongoing cycles of analysis, design, and evaluation within
each of the development activities identified in PUF.

2.1 Major Processes within PUF

PUF focuses on four major life cycle processes that work cooperatively
towards the development of a system. These processes include: possibilities
analysis, requirements analysis, design, and implementation. It is notable
that testing is not considered a separate process in PUF. That is because PUF
considers evaluation, which is broader than traditional testing, to be an
integral part of each of these other activities. Dealing with it in this manner
ensures that it is performed when it is most effective and that it is significant
in determining the usability of the resulting system.

Possibilities analysis attempts to identify and briefly describe all the main
scenarios, tasks, user groups, content chunks, and tools related to the
intended application system for all its potential releases. Evaluation of
existing possibilities plays an important role in identifying further
possibilities beyond those currently existing or obvious. Possibilities analysis
starts with recording narratives of existing scenarios and moves to develop
records describing each possibility. Possibilities analysis involves:
identifying possibilities, identifying relationships between different types of
possibilities, and identifying environmental factors influencing each
possibility. Possibility records describe the current and future environment
for the system being developed. Possibilities analysis is far broader and more
comprehensive than initial investigations typically performed by software
engineering. This comprehensiveness is essential in establishing a user-
centered context of use both for usability engineers and for software
engineers. While it is hoped that this work leads to a PUF requirements
analysis, even this initial activity can significantly improve the usability of
the resulting system.

A PUF requirements analysis expands the understanding of those
possibilities that have been selected as the basis for the development of the
current release. It evolves their possibility records into requirement records
by adding specific usability-related information and requirements. The set of
additional information and requirements is based on the particular type of
possibility being analyzed. Requirements analysis in PUF focuses to a
greater extent on usability requirements and to a lesser extent on technical

N. Transforming usability engineering requirements into software
engineering specifications

5

requirements than requirements analysis typical in software engineering life
cycles.

Because of the considerable overlap, it would be ideal for software
engineers to make use of a PUF requirements analysis as a starting point for
adding technical requirements. This can benefit software engineers by
reducing the amount of work they need to do, especially in the area of
gathering technical requirements. This, in turn, benefits usability engineers
and end users by ensuring that usability requirements are part of future
development decisions.

A PUF design focuses on new tools, scenarios and interactions that can
be added to the current environment. Whereas the previous activities can
easily be conducted by usability engineers apart from their software
engineering colleagues, it is more likely that software engineers will be
involved and often in charge of major design activities. PUF requirements
need to be integrated with other software engineering requirements to ensure
usability is properly considered in design.

Regardless of whether interface design is allocated to usability engineers
or is included within the main design activity, PUF can provide assistance in
identifying and evaluating usability issues related to this design. Design
specifications recorded as or translated into PUF records combined with
existing PUF records specify a use model [25] that can be subject to
evaluation prior to being implemented. These new records also provide an
up-to-date context for the development of future releases.

Implementation is usually in the hands of software engineers. To ensure
that usability engineering requirements will be considered in
implementation, it is essential that these requirements be included within the
formal specifications being used to construct and test the resulting system.

2.2 Possibility Types within PUF

The PUF methodology identifies and structures requirements based on an
interrelated set of five types of possibilities: tasks, users, content, tools and
scenarios, as illustrated in Figure 1. The combination of these records meets
all the requirements of ISO 13407 for consideration of users, goals, and the
environment. The user records in PUF specify information about the users’
characteristics. The task records in PUF specify information about the users’

6 Chapter N

goals. All the records and their linkage information and environmental
information identify the context of the user.

Figure 1. The five foci of PUF specifications

Users are not all the same and thus it is important to understand the
characteristics of different user groups. Severe usability problems can occur
in systems designed for a “generic” user who seldom exists. Users, while of
penultimate importance, are only users if they use the system and thus are
closely linked with the tasks that each of groups of users performs.

Tasks are specific accomplishments of one or more individuals in a
group of users. The degree of accomplishment of a task is generally more
important than the method of achieving it. Thus each of the users should be
allowed to select the methods which are most usable for them. Tasks are the
basis for individuals becoming users. This analysis of tasks should not be
limited to only those tasks that are currently considered to be part of what an
application should accomplish. The analysis of tasks should be expanded to
include similar tasks and other potential tasks that may not be currently
performed.

N. Transforming usability engineering requirements into software
engineering specifications

7

Content is the material processed by computer systems. Data can be
presented in a variety of formats and can be processed to higher levels such
as information and knowledge. Content serves the users accomplishing their
desired tasks, and should be kept subservient to both users and tasks.
Considerable usability problems can arise from structuring applications
around their content rather than around how this content will be used. The
content oriented “Field of Dreams” syndrome of “if you build it, they will
come” (that is especially prevalent in the design of Web sites but also exists
with many other applications) puts the ego of the developer ahead of the
needs of the potential users.

Tools are any of the many things (computerized or non-computerized)
that help a person accomplish some task (or set of tasks). Both developers
and end users need and use tools. Developers use their tools to create or
modify other tools (including software systems) for the end users. Different
tools (or sets of tools) can be used to accomplish the same task. Tools exist
at (and are designed for) various levels: from entire application systems
down to individual controls within the system. Tools, like content, serve the
tasks and users. Premature focusing on tools can lead to choosing tools that
are “neat” to the developer but which are impractical due to various usability
problems for the user.

Scenarios are specific instantiations of specific combinations of {users,
tasks, content, and tools}. Each of the tasks, tools, users, and content can
pose their own usability concerns. Further usability concerns arise in the
specific interactions between them.

2.3 The PUF Record Structure

PUF uses a common format to record information and requirements for
each possibility (scenario, user group, task, content, and tool), which is
illustrated in Table 1.

The amount of information recorded about a particular possibility
depends on the level of treatment that it has received in the development. As
soon as a possibility is identified, the identification section of a PUF record
can be filled out giving the possibility a unique name and a narrative
description, and identifying the type of possibility that it is describing. A
possibility analysis will add information about other related possibilities and
some initial information about the environment of the possibility. A
requirements analysis will add detailed specifications and requirements that

8 Chapter N

are based on a variety of detailed analysis questions [4]. Design adds
additional records and modifies information in existing records.

Identification Information
Name a unique, meaningful identifier
Type scenario/user/task/tool/content
Description clarifies meaning of name

distinguishes this component
from others

Linkage Information
Who identifies related user groups
What identifies related tasks
How identifies related tools
With which content identifies related content chunks
Scenarios identifies related scenarios
Environmental Information
When identifies current and potential

temporal attributes
Where identifies current and potential

physical attributes
How much quantifies the current and

potential future occurrences of
the possibility

Why identifies and evaluates the
justifications for possibility

Detailed Requirements
answers to specific questions based on the possibility type
Formal Specification
UML translation of the above information

Table 1. The general format of PUF possibilities records

3. THE UNIFIED MODELING LANGUAGE

Unified Modeling Language (UML) is a meta-language for specifying,
visualizing, and constructing the artifacts of a software-intensive system.
UML provides a standard way to develop a system’s blueprints, covering
conceptual things, such as business processes and system functions, as well
as concrete things, such as classes written in a specific programming
language, database schemas, and reusable software components [23].

N. Transforming usability engineering requirements into software
engineering specifications

9

The meta-language basis of UML already has the majority of the
attributes necessary to record usability engineering requirements. However,
due to the distributed nature of the location of these attributes and the lack of
usability engineering experience of most people utilizing UML, few
usability requirements are actually recorded in most developments.

Use cases are applied to capture the intended behavior of the system you
are developing, without having to specify how behavior is implemented. Use
cases provide a way for developers to come to a common understanding with
the system’s end users and domain experts. In addition, use cases serve to
help validate and verify a system as it evolves during development. A Use
case can model the context of a system, subsystem, or class, or model the
requirements of the behavior of the elements [9]. However, UML says
nothing about the content of a use case. The use case diagram models use
cases, actors, and the interrelationships among them.

Class diagrams are commonly used when building an object-oriented
system. A class is a description of a set of objects that share the same
attributes, operations, relationships and semantics [1]. Classes may include
abstractions that are part of the problem domain, as well as classes that make
up an implementation. Classes can represent software things, hardware
things, and even things that are purely conceptual.

3.1 Use Cases and Actors

Jacobson [19] introduced the concept of a use case which has taken on an
increasingly important role in software development. He recognized two
levels of use cases: essential use cases and use case instances (which are also
known as scenarios). “An essential use case describes interaction
independent of implicit or explicit assumptions regarding the technology or
mechanisms of implementation.” [19].

Constantine and Lockwood [9] discuss the role of essential use cases in
user interface design. Constantine [10] recognizes the importance of the
context for use cases and recommended that the developers should have the
capability to represent and manipulate context as the resources for
application development. He also separated the use case context into
materials, tools and work areas.

Use case development is a discovery process. It is a process of finding
out which information does not yet exist, and which may not yet be

10 Chapter N

understood. This information is generally entered in one of the many
templates available for working with UML, such as the one developed by
Cockburn [8]. Evans [11] states that few developers, even among those who
have written numerous use cases, understand that the dynamic process for
describing the use case is a process for finding new information and revising
inappropriate specifications.

Malan and Bredemeyer [22] believe that current use case specification is
not very appropriate for documenting usability requirements. One of the
shortcomings for the use case is that it uses a “non-functional” field to
specify the usability requirements. Also usability requirements are not
specific to use cases. A use case defines a goal-oriented set of interaction
between actors and system, both of which are documented elsewhere in
UML. Use case specification needs to integrate who (actors) does what
(interaction) with the system, for certain purpose (goals).

Various authors have suggested that the use cases should include a
greater amount of usability-related information. Lilly [21] stated that a good
use case specification should at least answer the following questions: Who
(actors), why (goals and/or context), when (the triggering events), what
(normal flow) and what else (alternative and/or exceptional flow). These
same questions are the basis of requirements in PUF. Cockburn [7]
advocates that use case descriptions should include the context and all the
circumstance of the primary actor’s goal. Lamsweerde [20] discusses a
model of the goal specification that contains types, taxonomic categories,
attributes and linkages.

Few use case templates have the fields to document usability-related
information, such as combining the context of use with the users/actors and
goals. Most of them treat usability information as “non-functional
requirements” that are not able to be specified or applied in UML. Thus,
UML does not ensure that resulting systems are usable.

While use cases can provide a starting point for incorporating usability-
related information, the current structure and practice does not go far enough
to meet all the information needs identified in PUF.

UML uses actors to, “represent a coherent set of roles that users of use
cases play when interacting with these use cases” [1]. This purpose is
equivalent to that of user groups in PUF. UML does not provide any
particular guidance about what information should be recorded concerning
actors. Rather UML allows developers to specify their own stereotypes to
describe actors and other objects. Cockburn recognizes the importance of

N. Transforming usability engineering requirements into software
engineering specifications

11

specifying actor and stakeholder interests, but does not present a particular
template for specifying properties of actors. He suggests that, “the use case’s
name is the primary actor’s goal” [8].

3.2 Classes

Whereas use cases are used to document requirements, UML class
diagrams are commonly used to document design. “A class is a description
of a set of objects that share the same attributes, operations, relationships,
and semantics. A class implements one or more interfaces.” [1]. Despite the
goal of implementing one or more interfaces, classes do not directly
document how they meet the interaction needs of actors. Rather, UML uses a
set of associations between classes, use cases, and actors.

Because of their emphasis on designing software, class attributes and
operations tend to be focused on technical aspects of classes. However, from
a functional perspective, attributes and operations provide the closest
concepts in UML to the PUF concepts of content and tools.

3.3 The Need to Add Usability Requirements to UML

Since current UML separates usability-related requirements from the
development procedure, there is a need for some form of usability
engineering, such as PUF, to supply usability-related requirements to the
development. If the PUF methodology is applied ahead of the UML
development, it will bridge the gap between usability requirements and
functional requirements and help produce a more usable application.

4. APPLYING PUF IN UML

This section will consider the candidate notations in UML that can
contain the PUF data and then, how each field in the PUF records can be
mapped into these notations.

Figure 2 illustrates the high level mapping from PUF to UML. The
components on the left side are from PUF and those on the right side are
from UML. The layout of the PUF components has been simplified from that
of Figure 1, to focus on the correspondence of PUF to UML components.
Because scenarios are the hub of the other components in the PUF
methodology, the tasks, users, content and tools serve together as the context

12 Chapter N

of use for the scenarios. The layout of the UML components includes: use
cases, actors, and classes. These components are linked with each other by
association relationships. Use cases include both essential use cases and use
case instances. Attributes and operations are subcomponents of classes that
relate to PUF components. The component level mappings identified here
are based on similarity of purpose. The information contained in
corresponding components is often at different levels of granularity.

Figure 2. High level relationships between PUF and UML components

Tasks in PUF correspond to essential use cases and map to use cases in
UML. Scenarios in PUF correspond to use case instances and also map to
use cases in UML. As discussed, use case instances are sometimes also
referred to as scenarios in the use case community. A scenario highlights the
interaction between the user, the context, and the system.

Users in PUF map to actors in UML. Both user records and actors focus
on the role of the user and relate users to other components that need to be
designed to meet the needs of these users.

Contents in PUF map to attributes in UML. Content is used by PUF to
describe the widest range of data types and modalities involved in an
application. Attributes specify the data and information used in the

N. Transforming usability engineering requirements into software
engineering specifications

13

application. Content information in PUF is usually more abstract than
attribute information in UML.

Tools in PUF map to operations in UML. The tools in PUF exist at
various abstraction levels from a complete application to individual
operations. The operations in UML are focused on specific operations
performed by a given object. Both tools and operations deal with how a
task/use case is accomplished.

The following sections provide details on mapping PUF tasks/scenarios,
users, content and operations to UML. Usability properties that do not
directly map to a concept in UML are also discussed for each PUF
component.

4.1 Tasks, Scenarios and Use Cases

Constantine and Lockwood’s definition of essential use case indicates
that, like the task record in PUF, the essential use case specifies what should
be done without specifying how to do it.

An essential use case is a structured narrative, expressed in the
language of the application domain and of users, comprising a
simplified, generalized abstract, technology-free and implementation-
independent description of one task or interaction that is complete,
meaningful, and well-defined from the point of view of users in some
role or roles in relation to a system and that embodies the purpose or
intentions underlying the interaction. [9]

According to Rosson scenarios, “are similar to instances of use-cases in
that they capture a single thread of execution in a given usage context” [24].
The scenario in PUF can map to use case instances. Scenarios can be more
elaborate than use case instances because they narrate not only the
interaction events but also the experience of the user(s) – the usage goals,
expectations and reactions convey information about the system’s usefulness
and usability.

PUF task records map to essential use cases and PUF scenario records
map to use case instances based on Cockburn’s basic use case template [8]
and his one-column table format of a use case [7]. In UML diagrams, most
of this information is not available. Table 2 illustrates the mapping from
PUF task records to UML use case diagrams. This table shows that the
identification and linkage information in PUF task records can easily be

14 Chapter N

modeled in UML. This provides a good starting point for ensuring that
records can be mapped successfully.

Some of the detailed requirements fields in PUF task records also readily
link with UML specifications. Task operations map to actions in the use
cases and to operations in classes. Requirements of users map to actors.

PUF: Task / Scenario UML: Use cases
Identification Information
name use case name
type: task /
 scenario

use case

description -- via a new property
Linkage Information
who associated actors
what (other) associated use cases
how operations associated via classes

and use cases
with which content attributes associated via classes

and use cases
scenarios (other) associated use cases
Environment Information
when -- via a new property
where -- via a new property
how much -- via a new property
why -- via a new property
Detailed Requirements
task operations -- via a new property
requirements of users -- via a new property
communications -- via a new property
learning -- via a new property
error handling -- via a new property
problem details -- via a new property

Table 2. Mappings from tasks and scenarios to use cases

In the environmental information section the why, which is used to
record justification details, does not map into the current use case template.
Detailed requirements in PUF task records that do not map into UML
specifications include: communications, learning, error handling and
problem details. These PUF fields need to be added as new properties to
UML essential use case specifications.

N. Transforming usability engineering requirements into software
engineering specifications

15

The use case template also includes some information not provided by
PUF. Use cases may specify a sequence of actions, the specified route of
achieving the task, either success or failure, kinds of association and
interface interactions. PUF only identifies that there are relationships among
components, while UML subdivides these relationships into include and
extend associations. The interface attribute describes the interaction between
actors and use cases. The PUF task record only specifies the context
information and does not specify the kinds of linkage and interaction.

4.2 Additional Usability-Related Properties for Use
Cases

Although the use case and other linked UML components provide a
location for some of the following information, there may be a need for
additional properties to further expand upon. The following new properties
should be added to UML use case diagrams, to record additional usability-
related information provided by PUF:

When and Where task used. The use case may be limited by its
environment, or might be used in a broader environment to achieve some
greater benefits. If the use case is used in a different location, different
frequency of use, and/or different distribution of peak usage, the design for
the use case will be different. Designers should know how to design the use
case to make it still achievable in various situations.

Why. Justification is an important predictor of potential future success. If
a use case does not fit the overall development, or costs of the use case
exceed either the benefits of serving it or available resources, it will be
impractical to develop special tools for the use case. Developers should
know the factors that will influence the feasibility and acceptability of
possible designs.

Task operations . This PUF field describes operational concerns.
Elaboration is needed to understand the operations of essential use cases to
evaluate how well current operations work and how future operations might
provide improvements. When designers start interaction design, they should
know whether the interaction meets the goal of the use case, whether there
are alternatives to achieve the use case, and what feedbacks the use case
should provide.

16 Chapter N

Requirements of users. It is important to recognize the requirements that
use cases place on actors. The developers should know how to design the
interfaces or interactions for the use case to meet users’ current skills and
mental and physical capabilities. This information may require additional
use cases or tools to help users reduce the impact of these factors.

C o m m u n i c a t i o n s . When users interact with the application,
communications take place. The task may require users to communicate with
other users or tools. Developers should know how to design the current use
case for different language, different frequency, different media, and
different security levels in communications or whether to create some new
potential use cases to better serve these communications.

Learning. To accomplish a use case, users need to learn how to interact
with the application. This implies that there might be a new use case for
training. Training learning through different methods, feedback, time and
environments, create different learning outcomes. Developers should
consider the learning needs and capabilities of the intended users.
Developers should know how to design a usable learning system and be
aware that different methods, feedback, time and environments could
influence the users’ learning results.

Error handling. Use cases should acknowledge where and when errors
may occur. Developers should recognize these situations and determine how
to help users avoid or handle them.

Problem details. When developers design the solution for problems, the
problem details should be thoroughly known. This information will help
developers develop a more effective and more efficient design solution.

4.3 Users and Actors

PUF identifies different user groups based on their different
characteristics and interaction needs. An actor in UML identifies a role that a
user can play without necessarily specifying any characteristics or
interaction needs. Table 3 illustrates the mapping from PUF user records to
UML actors based on UML specification version 1.5 [23] and Booch,
Rumbaugh and Jacobson [1]. This table shows that most identification and
linkage information in PUF user records can easily be transferred directly to

N. Transforming usability engineering requirements into software
engineering specifications

17

UML. This provides a good starting point for ensuring that records can be
mapped successfully.

PUF: User UML: Actor
Identification Information
name actor name
type: user actor
description --- via a property of a stereotype
Linkage Information
who other associated actors
what associated essential use cases
how operations associated via classes

and use cases
with which content attributes associated via classes

and use cases
scenarios associated use case instances
Environment Information
when -- via a property of a stereotype
where -- via a property of a stereotype
how much -- via a property of a stereotype
why -- via a property of a stereotype
Detailed Requirements
physical characteristics -- via a property of a stereotype
mental characteristics -- via a property of a stereotype
social characteristics -- via a property of a stereotype
group characteristics -- via a property of a stereotype

Table 3. Mapping from users to essential actors

Many useful fields in PUF user records are not found in current UML
actor records. Without recording and using this information, there is no way
of ensuring that resulting systems will meet the unique usability needs of
different groups of users. A UML stereotype can be used to define these
additional properties of actors for transferring user description from PUF.

The user record description field specifies the users’ characteristics of
membership in this group, especially focusing on how the user group is
different from other related groups.

If we want to build a more usable application, we should identify all the
possible contents and tools that might be used by users. Although UML does

18 Chapter N

not have direct linkages from actors to operations and attributes, actors can
indirectly touch the operations and attributes through linkage between use
case and class responsibility. However, without more direct linkages,
developers may fail to recognize situations where new tools need to be
compatible with existing tools and content.

While some environmental information can be obtained by linkages to
use case instances, this structure does not allow easy identification and
differentiation of environmental factors that are unique to a particular user
group. In user detailed requirements, PUF specifies the physical
characteristics and capabilities, mental characteristics and capabilities, and
social characteristics and capabilities of individuals, and characteristics of
groups. This information can further help the designers to design the
application according to the users’ unique characteristics.

4.4 Additional Usability-Related Properties for Actors

The following new properties should be added as a basic structure for
stereotypes for UML actors, to record additional usability-related
information provided by PUF:

When and Where actors operate. Different users may operate in
different environments. Each different environment, may involve different
usability and accessibility challenges that need to be handled by a system for
it to successfully meet the needs of that group of users.

How much. Different users may have differing levels of involvement
with different use cases. High levels of involvement generally mean that
users will stay familiar with the operations of systems used for the use case.
Infrequent involvement may suggest the need for refresher style retraining
before performing a use case or higher levels of help to assist in their
performance.

Why. Justification is an important predictor of potential future success. If
a user’s needs do not fit the overall development, or the cost of serving the
user exceeds the resources available or the benefits of such service, it will be
impractical to develop special tools for the user. Developers should know the
factors that will influence the feasibility and acceptability of possible
designs.

N. Transforming usability engineering requirements into software
engineering specifications

19

Physical. There are various physical limitations and impairments the
users may experience. Identifying this information, developers should
consider how to design the application to fit the range of physical
capabilities experienced by intended users, and whether they should design
some new tools for users to reduce the impact of any physical limitations.

Mental. Users’ mental characteristics influence how they typically react
to a variety of interactions and interfaces. Developers should consider
whether to create new tools and how to design the application to fit or
change actors’ mental capabilities.

Social characteristics and capabilities. Users may come from various
social communities with different social backgrounds. This information is
important for designers to determine how to design the interfaces and
interaction sequences for users who have the cultural and/or linguistic
differences with each other.

Groups. Membership in a group and or acting as a representative of a
group may influence a user’s actions. Developers should be made aware of
group membership situations that may influence the actions of a user.

4.5 Content and Attributes

PUF content records specify high level logical content chunks of data or
information. Attributes in a class identify particular data components,
generally at a detailed level. PUF content records map to high level data
structures of attributes in UML. The content component in PUF may be
implemented by one or more attributes in UML.

Table 4 illustrates the mapping from PUF content records to UML
attributes based on UML specification version 1.5 [23] and Booch,
Rumbaugh and Jacobson [1]. This table shows that most identification and
linkage information in PUF user records can easily be transferred directly to
UML. This provides a good starting point for ensuring that records can be
mapped successfully. PUF detailed requirements are generally closer to
implementation considerations and also map to UML components.

ISO 14915-3 [13] defines content in terms of various information types
that serve particular tasks and users. It classifies content type using various
dimensions including: physical or conceptual content and static or dynamic

20 Chapter N

content. PUF content chunks, while serving tasks and users, need not be
limited to a single set of dimensions. PUF uses content descriptions to
identify relevant dimensions and other attributes that may influence the use
and usability of the content chunk.

UML attributes currently focus on the data contents of the attribute
without considering its environment. New properties of attributes are
necessary to incorporate descriptions of the content and environmental
information about content chunks from PUF.

PUF: Content UML: Attribute
Identification Information
name attribute name
type: user attribute within a class
description -- via a new property
Linkage Information
who actors associated via use cases,

with visibility
what associated essential use cases
how operations within the class
with which content other attributes within the class
scenarios associated use case instances
Environment Information
when -- via a new property
where -- via a new property
how much -- via a new property
why -- via a new property
Detailed Requirements
structure via subclasses

also includes multiplicity
semantics via constraints
requirements on users visibility
how content handled operations associated via classes

& associated use case instances
when content used state machines associated to

operations
where content comes from &
is used

interaction diagrams

Table 4. Mapping from content to attributes

N. Transforming usability engineering requirements into software
engineering specifications

21

4.6 Additional Usability-Related Properties for
Attributes

The following new properties should be added to UML descriptions of
attributes, to record additional usability-related information provided by
PUF:

When and Where attributes are used. Attributes may need to be
handled differently in different temporal and environmental situations. For
example, some situations may call for precise details while others may prefer
summary data. Each different situation may involve different usability and
accessibility challenges that need to be handled by a system for it to
successfully work with an attribute.

How much. Attributes may be used in a system at considerably different
frequencies of use. High frequencies of use generally mean that users will
stay familiar with the meaning, format, and use of attributes. Infrequent use
may suggest the need for higher levels of assistance in working with
particular attributes.

Why. Justification is an important predictor of potential future success. If
the cost of including an attribute exceeds the resources available or the
benefits of such inclusion, it will be impractical to consider it for inclusion.
Developers should know the factors that will influence the feasibility and
acceptability of possible designs.

Although various UML components provide a location for some of the
following information, there may be a need for additional properties to
further expand upon:

Structure. Interface designers should consider where it is necessary to
organize several linked attributes or whether they should create some new
attributes to design more meaningful information for the users.

Semantics. The interface designer should understand the purpose of the
attribute, and consider how to design the attribute to let users understand the
information so that it can be used for different purposes in various use cases.

22 Chapter N

Requirements on users. There are many users who will use the attribute.
The interface designer should consider where it is necessary to design the
same information in different manners to be easily understood for various
users with different characteristics.

How content handled. Attributes will be operated by users with various
tools. Developers should know how to design a more usable attribute that
can be easily handled by all of the input tools, output tools and operation
tools.

When and where content is used and comes from. This concerns the
environment in which the attribute is obtained and used, and what
environmental factors may limit the usability of the attribute.

4.7 Tools and Operations

The PUF perspective on tools is that they are developed and used to serve
the needs of users and tasks and contents. Tools include: physical tools,
software tools, and procedural tools. An operation is a service that an
instance of the class may be requested to perform. Operations are detailed
software tools.

Table 5 illustrates the mapping from PUF tool records to UML
operations based on UML specification version 1.5 [23] and Booch,
Rumbaugh and Jacobson [1]. This table shows that most identification and
linkage information in PUF user records can easily be transferred directly to
UML. This provides a good starting point for ensuring that records can be
mapped successfully.

PUF uses a tool description to provide an initial narrative description of
the nature and operations of the tool. This description is later refined in the
detailed requirements. However, it remains useful for help narratives and
other more general purposes. UML operations currently focus on the internal
processing of the operation without considering its environment or many of
the usage-related detailed requirements identified by PUF. PUF detailed
requirements of tools are critical because they relate directly with detailed
requirements of tasks. This relationship is important in insuring that tools are
designed to meet usability requirements identified for the tasks they serve.
New properties of operations are necessary to incorporate descriptions of the
operations, environmental information, and detailed requirements about tools
from PUF.

N. Transforming usability engineering requirements into software
engineering specifications

23

PUF: Tool UML: Operation
Identification Information
Name operation name
Type: tool operation within a class
description -- via a new property
Linkage Information
Who actors associated via use cases
What associated essential use cases
How other operations within the class
with which attributes within the class
scenarios associated use case instances
Environment Information
When -- via a new property
where -- via a new property
how much -- via a new property
Why -- via a new property
Detailed Requirements
tool operations actions of use cases
requirements of users -- via a new property
communications -- via a new property
learning -- via a new property
error handling -- via a new property
problem details -- via a new property

Table 5. Mapping from tools to operations

4.8 Additional Usability-Related Properties for
Operations

The following new properties should be added to UML descriptions of
operations, to record additional usability-related information provided by
PUF:

When and Where attributes are used, How much, Why. The rationale
is similar to that for attributes discussed in section 4.6.

Requirements of users. Different tools require different skills and
abilities to operate them successfully. It is important to recognize the
abilities and skills that will be necessary for a given tool and then to compare
them with the skills and abilities of the various proposed users.

24 Chapter N

Communications. Tools are created to communicate with users and other
tools. Developers should consider the potential impact of different media and
methods that might be used to communicate with users and with other linked
tools. This involves recognizing the effectiveness of various current media
and methods.

Learning. Developers should consider the learning needs and capabilities
of the intended users. It is possible that additional tools must be built to help
users learn tools being developed that serve application-related use cases.

Error handling. Tools should acknowledge what errors might occur from
the user-side and tool-side. Developers should recognize these situations and
determine how to help users avoid or handle them.

Problem details. This field/property is used to document known
problems with this tool and tools that it is designed to replace.

5. IMPLEMENTING THESE ADDITIONS IN UML

As noted in Section 4, a number of the concepts in PUF are directly
supported in UML. For example, PUF users are mapped directly to UML
actors, PUF tasks are mapped to UML use cases, PUF contents are mapped
to UML attributes and PUF tools are mapped to UML operations. As well,
linkage information between users, tasks, content and tools are captured in
UML with associations. The additional usability-related properties discussed
in Section 4 that are not directly supported in UML include descriptions,
environment information and detailed requirements. However, UML was
designed to be extensible using annotations, stereotypes, constraints and
tagged values. In this section we describe how UML can be used to express
these additional PUF usability-related properties. We describe one approach;
alternative approaches are possible given the flexibility of UML.

In our approach, each usability property that does not map directly to a
UML concept is associated with a stereotype (cf. Table 6). These additional
stereotypes will be associated with actors, use cases, attributes, and
operations either using notes or classes.

N. Transforming usability engineering requirements into software
engineering specifications

25

Stereotype Use
Cases

Actors Attributes Operations

«description» X X X X
«environment
 information»

X X X X

«when» X X X X
«where» X X X X
«how much» X X X X
«why» X X X X
«detailed requirements» X X X X
«task operations» X
«requirements of users» X X
«communications» X X
«learning» X X
«error handling» X X
«problem details» X X
«physical
 characteristics»

X

«mental characteristics» X
«social characteristics» X
«group characteristics» X

Table 6. Stereotypes used to identify PUF usability properties in UML

(a) (b)

Figure 3. UML notation for associating PUF properties to user and task

26 Chapter N

Classes with compartments for ‘description’, ‘environment information’
and ‘detailed requirements’ are used to associate usability property
stereotypes with users and tasks. To distinguish a class as being an actor or a
user case, an actor icon or a use case oval icon is positioned in the top right
corner of the class rectangle. Figure 3 is an example of an actor (a) and a use
case (b) using this notation.

Stereotyped notes are used to annotate attributes and operations with
usability information. The note is attached to the attribute or operation with a
dependency relationship. The note will be stereotyped depending on the
information that has been provided and may be structured with multiple
stereotypes to reduce clutter. To further reduce clutter in the diagram, the
note may be used to link to a document with the detailed information. Figure
4 shows examples of using stereotyped notes to express the PUF usability
properties for attributes and operations.

Figure 4. UML notation for associating PUF properties to attributes and operations

6. EXAMPLE TRANSFORMATIONS

This section provides examples of transformations of two PUF records
from an e-Commerce application: a user record describing established
customers and a task record describing placing an order for items already in
a virtual shopping cart.

6.1 User Example

Consider the following PUF user record:

N. Transforming usability engineering requirements into software
engineering specifications

27

Identification Information
Name: established customer
Type: user
Description: a customer who has an existing account and who has made
previous purchases from this e-Commerce site.

Linkage Information
Who: a specialization of a customer
What: identifying items to order; selecting and deselecting items; ordering
selected items; enquiring about the status of orders; returning items.
How: the user may choose to perform tasks via telephone, via e-Commerce,
in person at a physical location, or using some combination of these three
tools.
With which content: customer information, customer shopping cart contents,
product information, order information.
Scenarios: created from all combinations of tasks (from What) and tools
(from How) performed by established customers.

Environment Information
When: whenever the user needs one or more products.
Where: at home; in an office; in an internet café; in a store.
How much: between 1 and 6 times a month.
Why: either to meet personal needs or the needs of some organization.

Detailed Requirements
Physical characteristics: requires the ability to use the methods specified in
the scenarios; may include disabilities that will require use of assistive
technologies.
Mental characteristics: ability to make purchase decisions; may want help to
understand processing options and product features.
Social characteristics: understands English language.
Group characteristics: may act as an individual or as a member of an
organization; greater accountability will be expected of purchases made for
an organization

Figure 5 shows how the user ‘established customer’ fits into the
inheritance structure of users involved in the e-Commerce application. As
well, the stereotypes outlined in Section 5 are used to specify the usability
properties. Common properties need only be specified once for the common
ancestor.

28 Chapter N

Figure 5. Users in the e-Commerce application

6.2 Task Example

Consider the following PUF task record:

Identification Information
Name: ordering selected items using e-Commerce
Type: task
Description: placing an order for items already selected and currently in the
customer’s virtual shopping cart.

Linkage Information
Who: customers; sales clerks
What: associated with selecting and deselecting items; enquiring about the
status of orders.
How: part of an e-Commerce application.
With which content: customer information, customer shopping cart contents,
product information, order information.

N. Transforming usability engineering requirements into software
engineering specifications

29

Scenarios: new customer ordering selected items; established customer
ordering selected items; sales clerk ordering selected items.

Environment Information
When: after selecting items for shopping cart.
Where: via the internet from at home; in an office; in an internet café; in a
store.
How much: 2 minutes per order times 1000 customer orders per day.
Why: to allow ordering from a wide range of locations is expected to
increase sales by 2000 items per day.

Detailed Requirements
Task operations: user confirms/modifies order; user provides customer
identification / information; user selects shipping options; user reviews
completed order; user confirms order.
Requirements of users: must have credit card; must use supported Web
browser; must understand English language.
Communications: this task involves formal interactive communications
between a single user and the e-Commerce system
Learning: the system must be self-descriptive and not require any training;
the user may wish to access descriptive help while performing this task.
Error handling: the system should validate data at each step before
proceeding and should help the user identify and make any required changes;
the system should allow the user to edit all user input fields prior to
confirming the order; items in an established customer’s virtual shopping
cart should remain until the customer deselects or orders them or until they
have remained there for over one month.
Problem details: the system must be at least as usable as Amazon.com.

Figure 6 shows the task ‘ordering selected items using e-Commerce’ as a
use case in the context of other use cases in the e-Commerce application. As
well, its linkage with the actors is shown. Since ‘customer’ is able to ‘order
selected items’ it is possible, given the generalization relationships, for an
‘established customer’ to ‘order selected items using e-Commerce’.

The task may be implemented as a class as design proceeds. The class
will contain attributes and operations corresponding to the content and tools
of the task (cf. Figure 6). Note that when a task corresponds one-to-one to a
class it is possible to use additional compartments in the class to repeat the
task’s PUF usability properties.

30 Chapter N

Figure 6. Use cases in the e-Commerce application

7. CONCLUSION

Putting Usability First (PUF) methodology is a user centered approach to
systems development. In this chapter we describe a mapping of PUF
descriptions to a common software modeling language: the Unified
Modeling Language (UML). It is hoped that expressing the PUF
methodology in UML can ensure the application is developed in a context
rich information environment that minimizes the occurrence of usability
problems.

We describe how many of the concepts in PUF are directly expressed in
UML. We also describe how PUF usability properties can be specified using
UML annotations and stereotypes. Mapping PUF to UML makes it possible
to trace the usability requirements to the design specified in UML and helps
bridge the gap between usability engineering and software engineering. As
the design is refined during the software engineering process the usability
properties can also be maintained and refined.

The transformations of usability requirements to software engineering
specifications described here allow usability engineers and software
engineers to integrate their efforts while performing their own processes.
This correspondence between usability and software design will hopefully
result in more usable software products and improve the traceability of
usability requirements.

N. Transforming usability engineering requirements into software
engineering specifications

31

REFERENCES

1. Booch, G., Rumbaugh, J. and Jacobson, I. The Unified Modeling Language User Guide.
Reading MA: Addison-Wesley, 1999.

2. Carter, J. Developing e-Commerce Systems. Upper Saddle River, NJ: Prentice-Hall,
2002.

3. Carter, J. Putting usability first in the design of Web sites, Proceedings of WebNet'97,
(Toronto, Nov. 1997), 142-148.

4. Carter, J. “Combining Task Analysis with Software Engineering in a Methodology for
Designing Interactive Systems,” Taking Software Design Seriously: Practical
Techniques for Human-Computer Interaction Design, J. Karat (Ed.). Boston: Academic
Press Inc., 1991, 209-234.

5. Carter, J. Juggling Concern for Completeness and Consistency with Concerns for
Flexibility and Adaptability Using MOST, Proceedings of the 34th Annual Meeting of
the Human Factors Society, (Oct. 1990), 341-345.

6. Carter, J. A framework for the development of multimedia systems for use in
engineering education, to appear in Computers & Education.

7. Cockburn, A. Writing Effective Use Cases. Boston, MA: Addison-Wesley, 2001.
8. Cockburn, A. Basic Use Case Template, TR 96.03a, Humans and Technology, version 2,

October 26, 1998. http://alistair.cockburn.us/usecases/uctempla.htm
9. Constantine, L. and Lockwood, L. Software for Use: A Practical Guide to the Models

and Methods of Usage Centered Design. Reading, MA: Addison-Wesley, 1999.
10. Constantine, L. Essential Modeling Use Cases for User Interfaces Interaction,

Constantine & Lockwood Ltd, 1995.
11. Evans, G., Why Are Use Cases So Painful?

http://www.evanetics.com/articles/Modeling/UCPainful.htm
12. Hefley, W., Buie, E., Lynch, G., Muller, M., Hoecker, D., Carter, J. and Roth, J.

Integrating Human Factors With Software Engineering. Proceedings of the 1994 Annual
Meeting of the Human Factors and Ergonomics Society, 1994, 315-319.

13. International Organization for Standard, ISO Standard 14915-3 Software ergonomics for
multimedia user interfaces – Media selection and combination, International Standard,
2003.

14. International Organization for Standardization, ISO Technical Specification 16982
Ergonomics of human-system interaction – Usability methods supporting human
centered design, 2002.

15. International Organization for Standardization, ISO Technical Report 18529 Human-
centred life cycle process descriptions, 2000.

16. International Organization for Standardization, ISO International Standard 13407
Human-centred Design Processes for Interactive Systems, 1999.

17. International Organization for Standardization, ISO International Standard 9241-11
Guidance on Usability, 1998.

18. International Organization for Standardization, ISO/IEC Technical Report 15504-2
Information technology – Software process assessment, 1998.

19. Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G. Object-Oriented Software
Engineering: A Use case Driven Approach. Addison-Wesley, 1992.

20. Lamsweerde, A van. Goal-Oriented Requirements Engineering: From System Objectives
to UML Models to Precise Software Specifications. Proceedings of the 25th
International Conference on Software Engineering (ICSE.03), 2003, 744-745.

32 Chapter N

21. Lilly, S. “How to Avoid Use-Case Pitfalls?”, Software Development Magazine, Jan.
2000. http://www.sdmagazine.com/articles/2000/0001/

22. Malan, R. and Bredemeyer, D. Functional Requirements and Use Cases, Bredemeyer
Consulting, June, 1999. http://www.bredemeyer.com/pdf_files/functreq.pdf

23. Object Management Group, Inc. OMG Unified Modeling Language Specification
Version 1.5, March 2003.

24. Rosson, M. “Integrating Development of Task and Object Models”, Communications of
the ACM, 42(1), Jan 1999, 49-56.

25. Rubenstein, R. and Hersh, H. The Human Factor: Designing Computer Systems for
People. Maynard, MA: Digital Press, 1984.

