
1

Building graphical development tools for the visually
impaired

Tanya Lung
Department of Computer Science,

University of Saskatchewan

Saskatoon, Canada, S7N 1L7

1 306 966-4886

tzt178@mail.usask.ca

ABSTRACT

Software development is a complicated process. Development
tools, while allowing basic functions needed for programming
and design, often provide advanced features such as
diagramming and ‘drag and drop’ form creation. While these
tools make development much more efficient for the average
developer, the visual nature of these tools is aimed at a sighted
audience. This creates barriers for the visually impaired. To
overcome these barriers guidance is introduced for improving
usability for the visually impaired. The guidance addresses
diagramming and looks at how DBVisAssist, a previously
created graphical development tool, is successful in
overcoming these barriers.

1. INTRODUCTION
Computer Science is a popular major for disabled students
[3][4]. This makes sense because computers are improving
many of their lives. It seems reasonable that the industry
which brought them new abilities should also be the industry
where it is easiest to work, however, this is not the case.

Franqueiro and Siegfried state that “[w]hile there have been
many efforts to make the World Wide Web and visual
representations of data more accessible to the blind, there have
been fewer efforts to make it easier for the blind to program
beyond the accessibility hardware and software that facilitate
their use of computers in general”[13]. This has become such a
problem that one software engineer interviewed by Horstmann
et al said that she “had been made redundant when her
department switched to UML, as she was unable to visualize
the diagrams”[14]. These problems need to be alleviated.
DBVisAssist, a previously created graphical development tool,
tries to overcome some of these problems. This paper will
introduce guidelines and how they affect DBVisAssist.

2. BACKGROUND
When designing and implementing complex systems,
programmers often employ development applications, also
known as Integrated Development Environments (IDE), which
simplify the processes of designing, programming, and
debugging. Development speed is hastened because “…the
trend has been for developer tools to provide more automatic
creation of major elements of applications”[7]. Some IDEs
provide features for diagramming, documentation and
collaboration with colleagues. These programs increase
sighted programmers efficiency but, since they are visual, can
hinder efficiency of a visually impaired programmer.
Franqueiro and Siegfried point out that when computers were
mainly command line based, visually impaired users where on
more equal footing with their sighted counterparts. The

movement to Graphical User Interfaces (GUIs) has put the

visually impaired at a disadvantage when using these interfaces

as well as when creating them[13].

When designing products to be used by people with various
abilities the question often becomes how much should one
support? Perhaps Vanderheiden said it best when he stated:

“No single interface technique will work. Creating an
everyone interface sounds wonderful, but it can sound
unobtainable. Trying to design to a single least common
denominator interface clearly does not work. If we use
only those abilities or input techniques that everyone has
and can use in any environment we would have to rule out
all visual, auditory, and tactile interfaces.”[29]

Vanderheiden suggests that one should increase the number of
supported users by supporting assistive technologies. He
claims that the “[k]ey to achieving everyone interfaces is the
provision of all basic information in either a modality-
independent or a modality-parallel (flex-modal) form”[29].
Modality-independent refers to information stored in a format
not specific to any one mode of presentation (visual, auditory
or tactile). Vanderheiden recommends ASCII text because i t
can be easily presented in all three modalities. Modality-
parallel refers to providing multiple modalities which can
work together or separate.

Since visually impaired programmers require extra support
when learning how to program[2][3][4][6][12], it is this
author’s standpoint that an application be built with the
visually impaired as it’s main audience.

2.1 Development Applications
There are many different IDEs available. Some of the more
common development applications are Visual Studio and
Eclipse. Both of these applications have highly intense visual
components involving multiple frames and toolbars.

Currently the visually impaired are using Assistive
Technologies (AT) to use the same developer tools as sighted
programmers. Interfacing development applications with AT
isn’t always the easiest, cost effective and most efficient
solution.

Screen readers are an AT tool used by the blind for navigating
computers. Unfortunately screen readers can fail when
accessing computer programs designed without screen readers
in mind. Franqueiro and Seigfried point out that problems
arise when working with development applications “…in
which most programmers “point and click” to design the forms
on which their applications rely”[13].

For example, on the American Foundation for the Blind
website, one programmer talks about his encounters with
certain developer tools. He complains that the “… Visual

2

FoxPro development environment was nearly impossible to
use with a screen reader”[1]. He goes on to talk about how
“[Visual Fox Pro] lacked keyboard access to some features,
used nonstandard controls, and some text was invisible to
some screen readers”[1]. This programmer complained about
Visual Basic 6.0, indicating icons in the toolbox are invisible
to most screen readers. The only screen reader able to handle
the toolbox was Window Bridge and it could only read the
default set of icons. Otherwise, visually impaired users must
use “help” for each icon before they can determine the icon
they are on.

Califf et al found in their first year classes use Eclipse that
although essential functions were usable for a visually
impaired student, “Eclipse is not ideal; there are several
functions that [the student] cannot access”[3].

2.2 Assistive Technologies
Cohen defines AT as “… a general term used to describe
devices or software that helps an individual provide input or
receive output from the system”[4]. There are currently many
ATs available for the visually impaired. It should be
mentioned that ATs are often expensive and can cost
thousands of dollars.

2.2.1 Screen readers
Cohen et al state that “[t]he main technology that visually
impaired users use to access a computer is a screen reader”[4].
Screen reader software runs behind other applications and
reads text that appears on the screen. Screen readers are unable
to provide context and cannot read images (unless underlying
coding provides a description i.e. an alt tag). Examples of
some common screen readers are JAWS, Window-bridge, and
Window-eyes. Basic screen readers are now being
implemented into Operating Systems such as Windows Vista
and Mac OS.

2.2.2 Screen magnifiers
Screen magnifying software is used by visually impaired who
have some sight capabilities but require text and images to be
enlarged. Examples of common screen magnifier programs are
Zoomtext, LunarPlus, and MAGic.

2.2.3 Braille printers and Embossers
Braille printers or embossers use a number of techniques to
print Braille to paper. Braille can be embossed onto paper via
impact (pins creating indents in the paper) or by using swell
paper (paper which swells when heat is applied).

2.2.4 Refreshable Braille display
A Braille display can connect to a computer in order for the
user to read in Braille what appears on their computer screen.
The device works by raising and lowering pins to provide the
Braille output. As a user moves around the screen, the display
automatically updates itself.

2.2.5 Optical Character Recognition & Scanners
Optical Character Recognition is used by visually impaired to
scan hard copies of documents to turn into digital documents.
This enables the user to output the document into a more
usable format such as Braille or voice.

2.2.6 Closed-Circuit Television (CCT)
A video camera projects a magnified image onto a screen.
Video monitors, televisions, and computer monitors can be
used as the screen.

3. WORKING WITH DIAGRAMS
This paper focuses on the use of diagramming in IDEs and the
barriers it creates for visually impaired programmers. .

3.1 Diagramming Tools
Some development applications allow the ability to create
diagrams pertaining to the project in development. A simple
example of this is the ER-Diagramming feature available in MS
Access.

For the sighted, diagrams assist with understanding
relationships between objects. These diagrams provide a
method for planning projects and provide a reference for the
development and maintenance of these projects. Diagrams are
highly visual and as such, diagramming tools are built with
sighted users in mind. Horstmann et al mention that “[a]ccess
to diagrams is currently provided to blind people in the form
of either verbal descriptions or tactile diagrams”[14].

When examining the research, diagramming tools seem to be
split into two different types, programs that allow users to read
diagrams and those that allow users to draw.

3.1.1 Reading
In their research, Horstmann et al identify three different types
of diagramming techniques for the blind. These techniques
are:

1. Tactile diagrams combined with touchpad
technology “… are sometimes referred to as audio-
tactile diagrams”[14]. This involves placing a tactile
diagram onto a touchpad. When the diagram i s
touched, auditory feedback is provided.

2. Combining refreshable displays with sound.

3. Translating visual images to auditory images “for
example using the pitch and timbre of different
musical instruments to indicate different aspects of
the image”[14].

AudioGraph [18] investigated the use of a touch panel in
conjunction with auditory feedback. Visually impaired users
interact with the system by touching the panel to select parts
of a diagram. Each selection is displayed to the user aurally.
For example, a connection sounds like a plucked string, and
text is verbalized. Although users were able to read the
diagrams, users sifted through an excess of information
because everything is explained in extensive detail.

iGraph-Lite[10][11] focuses on making graphics accessible in
Statistics Canada’s publication “The Daily”. The project
focuses on generating summaries of graphical data and
exploring data by the use of sound. The project provides
interaction with the use of natural language. Users can
navigate and explore data otherwise represented in graphical
format only. Graphics are input into the system as XML files.
In this case most XML files are an export from a MS Excel
document. The XML is analyzed and input into the navigator
which generates natural language to describe the graphs.
However, the reliance on natural language and the simplistic
command structure make it difficult for the user to customize.

TeDUB[14] describes diagrams and focuses on Unified
Modeling Language (UML) diagrams. The diagram
descriptions are based on guidelines presented by the
Confederation of Transcribed Information Services (COTIS).
Bitmap images or text-based electronic data format are
acceptable input methods. Users navigate via keyboard or

3

joystick. This solution allows collaboration between sighted
and non-sighted users. Another strength is the flexibility of
the system; users create their own methods for examining
diagrams. There are some downfalls such that “[t]he image
analysis stage is prone to errors that can lead to inaccurate
interpretation and failure to identify important image
components”[14]. Their solution involves sighted users
supervising and intervening when needed which removes
independence from the visually impaired user.

PLUMB [2][5][6][7] is one of the few tools which supports
both reading and creating graphs. Their focus is on
“communication of graphs and relational information to blind
computer science students”[7]. Graphs are displayed on the
tablet PC and, with the help of auditory cues, blind users
navigate graphs using either the tablet and pen and/or a
keyboard. Calder et al mention “[t]he downside is that
exploration can be slow and depends on the precision of the
users hand movements”[7]. As a result, it is “…difficult to get
information about incident graph elements since the user
needs to move the pen around the area and wait for sound
notification”[7].

PLUMB uses XML documents with the Graphics eXchange

Language (GXL) to create graphs. Users create graphics via the

command line or with second party GXL supported programs.

Unfortunately, the paper does not provide information

regarding feedback during diagram creation.

3.1.2 Creating
Kamel and Landay explain that “[b]lind users have had only
limited success in using drawing programs because traditional
drawing software lacks the capability to translate graphical
data output in a way that screen access programs can
interpret”[16]. They go on to say that in her paper, “Millar
showed the importance of visual feedback in a study
comparing the ability of congenitally blind and sighted but
blindfolded children to draw the human figure”[16]. Kamel
and Landay also state, as suggested by Millar, that detail
provided in these drawings was directly related to visual
feedback. It was also mentioned that “[s]ighted but
blindfolded children performed only slightly better than
congenitally blind children in creating details, cohesion, and
alignment”[16].

Some drawing solution involve touchpads combined with
tactile images. Kamel and Landay explain “this requires the
user to purchase a tablet, possibly a prohibitive expense”[16].
Instead, they use electronic images making images easier to
modify. The Integrated Communication to Draw (IC2D)[16]
tool uses grids to provide visual element locations. A
keyboard provides input and output is provided aurally.
Users draw images in a 3x3 recursive grid. A recursive grid
refers to the ability to subdivide a cell into another 3x3 grid
up to an additional two levels; providing up to a 27x27 grid.
Kamel and Landay found that levels beyond 27x27 become
too difficult to conceptualize. Locations on the grid are
presented in the form of a telephone keypad because blind
individuals are trained on the use of a telephone keypad in
school. Users specify their own labels for objects and
positioning. Although it gives users a more precise, feedback
oriented drawing system, it is time consuming and not
diagram specific.

Kurze created TDraw [19], which places heat-sensitive, swell
paper onto a Thermostifft digitizing tablet. Input i s
recognized as users draw on the swell paper and provide

appropriate voice commands. Users connect attributes to the
elements they are drawing by providing verbal commands.
Once a drawing has been completed, a tablet and special pen
can be used to explore. The computer recognizes when the pen
approaches an element and provides text-to-speech output to
the user. Unfortunately, the swell paper means that drawings
cannot be altered later. As well, there is no feedback provided
to the user during the drawing process. This makes it difficult
to draw items in relation to one another for example, two
shapes of equal size.

3.2 Mental Models
Humans are visual by nature. We have art such as paintings,
movies and literature. All these items traditionally require
sight. A fair assumption is that someone who has never had
sight probably thinks and deals with things differently that
the average sighted individual.

3.2.1 Perceiving Spatial Relationships
Visuospatial perception refers to the ability to recognize and
visualize spatial relationships and locations between objects.
Cornoldi found that “numerous studies showed that
congenitally totally blind people are able to generate and
process visuospatial images and in some cases, the blind can
perform as well as sighted individuals” [8]. In explanation of
his findings, Cornoldi presents the concepts of passive
storage and active storage. Passive storage is the retention of
visuospatial information while active storage is the
transformation, manipulation, or integration of stored
memory. He found that visually impaired individuals perform
passive tasks involving visuospatial images with the same
accuracy as sighted people, but had more trouble than sighted
people when required to manipulate the images. Cornoldi
directly relates this problem to his finding which indicate
“congenitally blind cannot have visual traces” and “cannot
use traces to generate more complex mental images” [8]. This
is because visual traces, a type of mental imagery, are gained
only by visual experience.

3.2.2 Visual Tracing
Cornoldi [8] states that visual traces are different from
generated mental images which are gained from other
information such as haptics and long term memory. Orienting
in space can be easy, however updating mental representations
can be challenging. Visually impaired individuals can make
use of mental imagery strategies similar to sighted
individuals. Visually impaired people tend to work best
within two dimensional spaces where they can perform better
than the sighted in memory tasks.

3.2.3 Learning
Schneider [24] suggests that it is best to use the learning-by-
doing principle. He goes on to explain that when visually
impaired people are about to embark on an outing to a
destination they have never visited before, they often
memorize the layout of a given area, learn the pathway
segments, and then the angles between the paths [24].

Sanchez and Aguyo observed that blind learners rely on past
experience to build their abstract thinking. Only time using
their program helped users gain the necessary experience for
understand the programming paradigms.

Jeung and Gluck [15] conducted experiments using muti-
modal feedback when dealing with thematic maps. In a number
of different experiments, information was provided to

4

participants for two variables. The information was provided
in one of the following combination of modes: both variables
as visual information, one variable as visual and one as
auditory, one as visual and one as haptic, and finally one as
auditory and one as haptic. Interestingly, they found that when
asked to remember information, people using multimodal
display did best when the display combined auditory and
haptic feedback.

In Horstmann et al’s study they determined that visually
impaired users could build a mental representation of
hierarchical structures as well as navigate them. It was also
noted “…how visually impaired users prefer to conceptualize
hierarchies based upon their existing experience of navigating
tree structures in programs such asWindows Explorer”[14].
This means that they preferred to navigate information from
left to right.

3.2.4 Sensing
Lai and Chen conducted an interview where ‘listening to
music’ was one of the most popular methods for passing time.
Interview and experimental results led them to the conclusion
“…that hearing is one of the most essential channel toward
external messages”[20]. As a result they suggest that further
studies should be done on the interfaces between humans and
audio appliances.

 Two-point tactile threshold felt by ones hands was another
area of experimentation conducted by Lai and Chen. They
found that the blind’s fingertips have a sharper sensation than
a normal-sighted person’s fingertips. They concluded “this
probably has a lot to do with the fact that the blind students
are accustomed to using the pulp of their index finger to read
in Braille”[20].

3.3 Input and Output
As mentioned earlier, visually impaired persons learn by
building on their previous capabilities and experiences.
Combining the aforementioned mental model with
Vanderhieden’s suggestion about modality-independent and
modality-parallel, we can see that there are three basic input
methods; keyboard, voice, and touchpad with tactile overlay.
A system can work functionally with the use of keyboard or
voice input for the majority of visually impaired users. A
touchpad on it’s own however, doesn’t provide the same
capabilities. Touchpads will be discussed later as they are both
a source of input and a source of output.

The different methods of output available to the visually
impaired are audio and tactile. Audio can be provided as
speech output or a number of variously mapped sounds. Since
auditory output is the most common method for receiving
output, this is one medium which must be supported.
Tactilely, users can access Braille displays, Braille printers,
and touchpads with tactile overlays.

A touchpad requires the user to have some knowledge and
context about a system before using it. It is easy to hypothesis
that the reasoning behind PLUMBs slow diagram exploration
times is due to the following reasons:

1. Users with no diagram experience would have
difficulty when first trying to understand a diagram.

2. Touchpads do not provide tactile feedback making i t
easy for a user to become disoriented.

3. It difficult to locate and relocate specific parts of
drawings on a touchpad. Without sight, one can only
use some method of estimation to determine exact
locations.

Using a tactile overlay helps elevate most, if not all, of the
above mentioned problems. However, since not all visually
impaired users are familiar with Braille and tactile diagrams,
the design of these tactile overlays will need to be generic. As
users will probably require training in order to recognize
certain elements.

It is the recommendation of this author to provide all
information at least aurally. Since multi-modal interaction
achieves the best memory results, it would be beneficial to
provide tactile feedback as a secondary channel.

3.4 Barriers
When embarking on a journey by foot, if you need to cross a
river without a bridge, the river becomes a barrier. Similarly,
computer users can encounter barriers. Donker et al[9],
identified four barriers to accommodate for when designing
software for visually impaired users.

1. The pixel barrier refers to screen output being in pixel
maps which screen readers are incapable of reading.

2. The graphics barrier refers to the loss of information
during translating images into words. It often results
in long, complicated textual descriptions.

3. The layout barrier refers to using layout for semantic
reasons.

4. The mouse barrier refers to the visually impaired
being unable to use a mouse as an input medium.

This paper proposes a fifth barrier, the drag and drop barrier.
This refers to tasks that, while easy to complete using drag and
drop or even point and click, are highly complex without the
use of that modality.

3.5 Creating and Reading Diagrams
As mentioned earlier, Horstmann et al designed their system
around guidance provided by COTIS. These guidelines are
important when determining how to display your diagrams
verbally to users.

1. State why the diagram is there.

2. Differentiate between different levels in diagrams.

3. Describe visual aspects of the diagram. Use terms
such as ‘egg shaped’, vertical, and perpendicular.

4. Summarize the diagram.

5. Make important details apparent.

6. Minimize interpretation.

7. Order descriptions; provide start points and direction.

8. Include all features of the diagram.

9. Identify components, clarify labeling and identify
differences.

It is important for the user to understand whether a relationship
exists between ‘table 1’ and ‘table 2’. When creating diagrams
to share with sighted individuals, it may also be important for
the visually impaired person to have an understanding of the
layout. Then they can change the diagram as suggested by
peers and understand discussions if someone says something

5

like “the table that appears in the top right hand corner”. It may
also be important to allow the user to choose his start points in
the diagram.

To output the diagram information aurally, consider the
following strategies in addition to the guidelines presented by
COTIS. These strategies should help overcome barriers and
achieve the highest understanding of the user:

1. Stay away from similar sounds [9].

2. Use contextual reinforcement for relationships [9].

3. Use non-pixel mapped graphics [9].

4. Keep descriptions short and precise [9].

5. Divide information that requires processing into
subparts [8].

6. Use chunking to reduce the amount of to-be-treated
elements [8].

7. Use strategies for working with visual manipulation
to overcome task difficulties [8].

8. Provide an overview, then offer further details [26].

9. Allow users to locate and relocate important points
and “[s]ome guideline or frame of reference i s
needed”[16].

10. Make use of 3x3 grids where possible [16][17][26].
to increased accuracy for visually impaired when
locating objects. The use of recursive grids can
achieve more detail however, a 27x27 grid should be
the maximum size used.

11. Allow the user to primarily navigate diagrams using
the keyboard. Secondary navigation can be provided
via a tactile diagram overlaid on a touchpad.

12. Present line diagrams as a "layered" sequence of
diagrams [12].

Creating diagrams should be kept simple. To accomplish this,
I introduce three guidelines in combination with two
guidelines from other sources.

1. The system should automate as much of the process
as possible.

2. Due to input modality constraints, all the input
should be handled via keyboard however, voice may
be a modality to be explored further.

3. Users should be offered a 3x3 grid in order to control
the location of objects [16][17][26].

4. Offer users preference options before rendering the
drawing. These preferences should include items
such as location of objects, the level of the drawing
(detail offered), objects to appear in the drawing.

5. Allow the user to easily toggle the tasks of reading
and creating/modifying the diagrams [17].

4. DBVisAssist
DBVisAssist [22] is currently a prototype, previously built by
this author which allows the visually impaired to create
Entity-Relationship diagrams.

DBVisAssist presents and obtains information using a series
of webpages. These pages are presented to the user in a task-
based succession but the user can deviate from the path at any

time. A system of simple links is used to navigate through
DBVisAssist.

The system utilizes four strategies for visualization. These
include using chunking, creating subparts, employing visual
manipulation strategies, and providing overviews. Four
strategies are used for obtaining information aurally:
providing contextual reinforcement, providing short
descriptions, not using image files and staying away from
similar sounds.

4.1 Chunking and Subpart Dividing
DBVisAssist decomposes into two parts: one part allows
adding data for ER-Diagrams and the second part provides
visualization and navigation of the ER-Diagrams.

Users traverse through a series of tasks to add data to create an
ER-Diagram. The system presents the tasks in sequence, which
the user can easily follow. An example of a task would be
adding a table and it’s attributes.

To visualize and navigate through an ER-Diagram, users are
provided with a verbal description of the ER-Diagram.
Division of information and diagrams themselves into
subparts allows users to retrieve information from the lowest
to highest levels of detail. The subparts, listed from the lowest
level to the highest, are:

1. Read a single table and its attributes

2. Read a single table and its relations

3. Read all the tables, relations, and locations

4. Read the entire diagram

4.2 Spatial Manipulation.
 Allowing users to change table locations within a diagram
requires spatial manipulation. In order to provide the user a
method to deal with manipulation, a grid system similar to
IC2D is used. IC2D assumes most users are familiar with a
telephone keypad; however, DBVisAssist assumes that
software developers would expect to use a keyboard number
pad layout.

Each region in the grid is given a number based on the
keyboard keypad. Each table is assigned to a region meaning
the system can currently support up to 9 tables. The system
automatically assigns each table to an optimal position and
automatically switches table locations when the user moves a
table into an occupied region.

Locations of tables in the diagram are important for
understanding how the outcome may appear sighted users or
when collaborating with sighted users. The DBVisAssist
system reports the location of a table in the diagram grid. For
example, “Table Teachers is located in region 1”. Descriptions
of the diagram are read in order of the regions (1-9). They
begin with the location of the table, move on to the table’s
attributes, and then the relations. The descriptions do not
describe the diagram exactly because it is unnecessary to
explain the actual visual appearance. Instead, only necessary
information is conveyed (the tables, attributes, locations, and
relationships).

4.3 Contextual Reinforcement
 As suggested by Filepp, users should not be required to
remember sequences of information. Therefore, relationships
are presented using prose. For example, if the user inputs a

6

relation named “Teach” between the teacher and student tables,
the relation is read back as “Table Teachers teach Table
Students”.

However, if a user does not input a relation name, the system
automatically assigns the relation name of “is related to” so
the relation is read as “Table Teachers is related to Table
students”. When reading tables and attributes, the system
explains each item such as “Table Teachers” or “Attribute
firstname”.

4.4 Overviews
Each task provides an overview that describes what has already
been done and/or what the system will be doing. For example,
if the user is adding a new table, the system lets them know the
number of existing tables and the name of each table.

4.5 No Image Files
In order to avoid image files, diagrams need to be created
using a markup language. It is necessary that the screen-reader
reads a description of the diagram and not the diagram itself.
Since the diagrams are readable by the FireVox screen reader,
there can be elements that do not need to be read to the reader.

5. EVALUATION
My current research evaluated DBVisAssist in three areas: web
accessibility, correct visual representation of an ER-Diagram,
and a navigable verbal representation of an ER-Diagram.

The World Wide Web Consortium's Web Content Accesiblity
Guidelines (WCAG) [28] identify three increasing levels of
accessibility, referred to as Priority 1, 2, and 3. WebXACT [27]
is a tool for testing web accessibility baased on WCAG’s
guidelines.

I created an ER-Diagram using DBVisualizer, an IDE used with
various DBMSs, and compared it to the visual ER-Diagram
created by DBVisAssist.

Initial user testing was performed on DBVisAssist’s
navigational scheme with two sighted, one visually impaired,
and two simulated visually impaired participants (who used
DBVisAssist without a screen). Simulated visually impaired
participants were used because of the difficulty in finding
visually impaired people trained computer science [3][25]. It
should also be mentioned that the results obtained from the
simulated visually impaired subjects should be similar to
someone who became visually impaired later in life.

Participants were given brief training on using the screen
reader and DBVisAssist. Using the think-aloud method, users
performed a number of tasks. Some tasks required the input of
information. Tasks were split into two categories; creating
diagrams and reading diagrams. Tasks for creating diagrams
were: determine the number of tables in the system, determine
the table names, add tables, add relationships, and move
tables. The tasks for reading the diagrams were to determine
the attributes in a table, determine the relationships of tables,
and to determine the location of tables. Post-testing interviews
were conducted to determine users perceptions of the system.

To determine if the tool was navigable by visually impaired
and sighted users, I used two variables; efficiency and error.
An efficiency measure of 0-2 was used, where 0 meant the user
failed to complete the task, 1 meant the user completed the
task but took a longer method to get to the final result, and 2
meant the user took a path which lead directly to the correct
answer. The error rate was based on the amount of wrong paths

taken. Errors specifically related to the screen reader (such as
using wrong commands) were ignored because the screen
reader's usability wasn’t being tested.

6. RESULTS
Each page of DBVisAssist was tested in WebXACT. The
application successfully achieves a Priority 3, meaning that i t
achieves the highest level of accessibility as recommended by
WCAG guidelines.

When comparing the diagrams from DBVisAssist against the
diagrams from DBVisualizer, results reveal minor differences.
The largest difference is that DBVisAssist displays names of
the relations where Dbvisuallizer displays datatypes. These
differences can be seen in Figures 1 and 2.

Figure 1. ER-Diagram from DBVisualizer

Figure 2. ER-Diagram from DBVisAssist

The sighted and simulated visually impaired participants
indicated the diagrams from DBVisAssist were basic but
comparable to other programs they used. One sighted
participant had experience with four other diagramming tools.
The participant indicated that DBVisAssist was the easiest
diagramming tool she had used. These comparisons show the
diagrams from DBVisAssist are acceptable to sighted readers.

The simulated visually impaired participants listened to the
auditory diagram. When shown the corresponding visual
diagram, they commented that the visual diagram was similar
to what they expected.

All participants successfully navigated through DBVisAssist
with only minor difficulties attributed to learning the screen
reader. In fact, tasks involving finding and reading the
required diagrams had no errors for both the visually impaired
and sighted groups. However, the efficiency for visually
impaired and simulated visually impaired participants was not
as good as for the sighted. There were three instances where
participants took an unexpected path but were still able to find
the correct information.

7

Interestingly the visually impaired subject had 0 errors which
was better than even the sighted subjects who had a sum of 3
errors. The simulated visually impaired subjects had a sum of
10 errors. The tasks with the most errors were the “adding
tables” task with 7 errors and “add relationships” task with 4
errors. Table A illustrates the errors by user for tasks: A:
determine the amount of tables in the system; B: determine all
the table names; C: add tables; D: add relations; E: move
tables; F: determine the attributes in a table; G: determine the
relations of a table; and H: determine the location of a table.

Error Rates by usertype per Task

0

1

2

3

4

5

A B C D E F G H

Tasks

E
r
r
o

r
s

Simulated Visually Impaired

Visually Impaired

Sighted

Table 1: Error rates by user type per Task.

The lack of errors during reading the diagrams shows that
DBVisAssist helps with understanding relationships between
objects within a database regardless of the user’s sight
abilities and that the diagrams are easy to navigate.

For efficiency, both sighted participants were 100% efficient,
the visually impaired participant and one simulated visually
impaired participant were 89% efficient, and the remaining
simulated visually impaired participant was 72% efficient.

An analysis of errors and of post-testing interviews reveals
that tasks should be broken down further. For example, the
location information could be removed from the diagrams and
included in its own section. Participants indicated that they
were more interested in the relationships then the locations of
the tables when they were reading these diagrams. The
location information seemed to be important only if they
needed to modify the diagram.

Some users suggested they liked the amount of detail
provided by the system while performing tasks while others
indicated that they needed either more or less detail. One
participant wished the tool adapted to the user’s experience
with the program by offering less detail once the user was more
experienced. This suggests that incorporating user preferences
would be beneficial.

The visually impaired user seemed excited and mentioned that
he hadn’t heard of a similar tool. He was hopeful that further
work would be done so that the system could support tactile
graphics and other screen readers.

7. Conclusion
DBVisAssist achieves goals of providing a tool that allows
sighted and visually impaired users the ability to share
diagrams.

The diagrams are visually and aurally readable. The oral
descriptions allow the user to visualize the relationships
belonging to a database. The accessible tool allows the users
to create diagrams and control the locations tables appear in
the diagram. The diagrams, though basic were comparable to

diagrams created by another database diagramming program.
These results along with our participants opinions showed
that the diagrams were acceptable.

Finally, DBVisAssist proved navigable by sighted and
visually impaired users. Users were able to navigate the
program and specially the diagrams with few errors. When
comparing the error rates between sighted and visually-
impaired users, there were minor differences.

8. Future Work
DBVisAssist is a good first step towards creating an accessible
IDE. However, it currently does not take into account all
guidance suggested in this paper. Interestingly, the
unaccounted for guidance issues were also brought up by the
participants. These items include: compatibility with existing
assistive technologies, layering the diagrams more, allowing
bookmarks and allowing preferences to be set for your
diagram.

Currently, DBVisAssist is capable of displaying up to a
maximum of nine tables. Since many complex systems
contain more tables, it would be beneficial for DBVisAssist to
support more tables.

9. REFERENCES
[1] American Foundation for the blind. 2008. The Right (or

Required) Tool for the Job: Microsoft Developer Tools
and Screen Readers. accessed on April 2, 2008
http://www.afb.org/Section.asp?Documentid=1411

[2] Calder, M., Cohen, R. F., Lanzoni, J., Landry, N., and Skaff,
J. 2007. Teaching data structures to students who are
blind. In Proceedings of the 12th Annual SIGCSE
Conference on innovation and Technology in Computer
Science Education (Dundee, Scotland, June 25 - 27, 2007).
ITiCSE '07. ACM, New York, NY, 87-90.

[3] Califf, M. E., Goodwin, M. M., and Brownell, J. 2008.
Helping him see: guiding a visually impaired student
through the computer science curriculum. In Proceedings
of the 39th SIGCSE Technical Symposium on Computer
Science Education (Portland, OR, USA, March 12 - 15,
2008). SIGCSE '08. ACM, New York, NY, 444-448.

[4] Cohen, R. F., Fairley, A. V., Gerry, D., and Lima, G. R. 2005.
Accessibility in introductory computer science. In
Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education (St. Louis, Missouri, USA,
February 23 - 27, 2005). SIGCSE '05. ACM, New York, NY,
17-21.

[5] Cohen, R. F., Haven, V., Lanzoni, J. A., Meacham, A., Skaff,
J., and Wissell, M. 2006. Using an audio interface to assist
users Who are visually impaired with steering tasks. In
Proceedings of the 8th international ACM SIGACCESS
Conference on Computers and Accessibility (Portland,
Oregon, USA, October 23 - 25, 2006). Assets '06. ACM,
New York, NY, 119-124.

[6] Cohen, R. F., Meacham, A., and Skaff, J. 2006. Teaching
graphs to visually impaired students using an active
auditory interface. In Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education
(Houston, Texas, USA, March 03 - 05, 2006). SIGCSE '06.
ACM, New York, NY, 279-282.

8

[7] Cohen, R. F., Yu, R., Meacham, A., and Skaff, J. 2005.
PLUMB: displaying graphs to the blind using an active
auditory interface. In Proceedings of the 7th international
ACM SIGACCESS Conference on Computers and
Accessibility (Baltimore, MD, USA, October 09 - 12,
2005). Assets '05. ACM, New York, NY, 182-183.

[8] Cornoldi, C. (2000). Mental imagery in blind people: the
role of passive and active visuospatial processes. In
Heller, M. A. (Ed), Touch, Representation, and Blindness.
(pp.143-181) Oxford University Press, NY: New York.

[9] Donker, H., Klante, P., and Gorny, P. 2002. The design of
auditory user interfaces for blind users. In Proceedings of
the Second Nordic Conference on Human-Computer
interaction (Aarhus, Denmark, October 19 - 23, 2002).
NordiCHI '02, vol. 31. ACM, New York, NY, 149-156.

[10] Ferres, L., Verkhogliad, P., and Boucher, L. 2007. (Natural
language) interaction with graphical representations of
statistical data. In Proceedings of the 2007 international
Cross-Disciplinary Conference on Web Accessibility
(W4a) (Banff, Canada, May 07 - 08, 2007). W4A '07, vol.
225. ACM, New York, NY, 132-133.

[11] Ferres, L., Verkhogliad, P., Lindgaard, G., Boucher, L.,
Chretien, A., and Lachance, M. 2007. Improving
accessibility to statistical graphs: the iGraph-Lite system.
In Proceedings of the 9th international ACM SIGACCESS
Conference on Computers and Accessibility (Tempe,
Arizona, USA, October 15 - 17, 2007). Assets '07. ACM,
New York, NY, 67-74.

[12] Francioni, J. M. and Smith, A. C. 2002. Computer science
accessibility for students with visual disabilities. In
Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education (Cincinnati, Kentucky,
February 27 - March 03, 2002). SIGCSE '02. ACM, New
York, NY, 91-95.

[13] Franqueiro, K. G. and Siegfried, R. M. 2006. Designing a
scripting language to help the blind program visually. In
Proceedings of the 8th international ACM SIGACCESS
Conference on Computers and Accessibility (Portland,
Oregon, USA, October 23 - 25, 2006). Assets '06. ACM,
New York, NY, 241-242.

[14] Horstmann, M., Lorenz, M., Watkowski, A., Ioannidis, G.,
Herzog, O., King, A., Evans, D. G.,Hagen, C., Schlieder, C.,
Burn, A. -M., King, N., Petrie, H., Dijkstra, S. and Crombie,
D. (2004) 'Automated interpretation and accessible
presentation of technical diagrams for blind people', New
Review of Hypermedia and Multimedia, 10:2, 141 - 163

[15] Jeong, W., and Gluck, M., (2002) “Multimodal bivariate
thematic maps with auditory and haptic display”,
Proceedings of 2002 International Conference on
Auditory Display, Kyoto, Japan, pp. 1-4.

[16] Kamel, H. M. and Landay, J. A. 2000. A study of blind
drawing practice: creating graphical information without
the visual channel. In Proceedings of the Fourth
international ACM Conference on Assistive Technologies
(Arlington, Virginia, United States, November 13 - 15,
2000). Assets '00. ACM, New York, NY, 34-41.

[17] Kamel, H. M. and Landay, J. A. Sketching images eyes-
free: a grid-based dynamic drawing tool for the blind. In
Proceedings of the Fifth international ACM Conference

on Assistive Technologies (Edinburgh, Scotland, July 08 -
10, 2002). Assets '02. ACM Press, New York, NY, 2002,
33-40.

[18] Kennel, A. R. 1996. Audiograf: a diagram-reader for the
blind. In Proceedings of the Second Annual ACM
Conference on Assistive Technologies (Vancouver,
British Columbia, Canada, April 11 - 12, 1996). Assets
'96. ACM, New York, NY, 51-56.

[19] Kurze, M. 1996. TDraw: a computer-based tactile drawing
tool for blind people. In Proceedings of the Second
Annual ACM Conference on Assistive Technologies
(Vancouver, British Columbia, Canada, April 11 - 12,
1996). Assets '96. ACM, New York, NY, 131-138.

[20] Lai, Hsin-Hsi. "A study on the blind's sensory ability."
International journal of industrial ergonomics 36.6
(2006):565-570.

[21] Lin, C., Francioni, J. M., Hossain, A., and Kang, P. 2004.
Accessible student-directed visualization of computer
organization concepts. In Proceedings of the 2004
OOPSLA Workshop on Eclipse Technology Exchange
(Vancouver, British Columbia, Canada, October 24 - 24,
2004). eclipse '04. ACM, New York, NY, 47-51.

[22] Lung, Tanya. 2006. DBVisAssist: Creating ER-Diagrams
for the Visually Impaired. Cmpt 898. Accessible
Computing.

[23] Sánchez, J. and Aguayo, F. 2005. Blind learners
programming through audio. In CHI '05 Extended
Abstracts on Human Factors in Computing Systems
(Portland, OR, USA, April 02 - 07, 2005). CHI '05. ACM,
New York, NY, 1769-1772.

[24] Schneider, J. and Strothotte, T. Constructive exploration
of spatial information by blind users. In Proceedings of
the Fourth international ACM Conference on Assistive
Technologies (Arlington, Virginia, United States,
November 13 - 15, 2000). Assets '00. ACM Press, New
York, NY, 2000, 188-192.

[25] Smith, A. C., Francioni, J. M., and Matzek, S. D. 2000. A
Java programming tool for students with visual
disabilities. In Proceedings of the Fourth international
ACM Conference on Assistive Technologies (Arlington,
Virginia, United States, November 13 - 15, 2000). Assets
'00. ACM, New York, NY, 142-148.

[26] Strain, P., McAllister, G., Murphy, E., Kuber, R., and Yu, W.
2007. A grid-based extension to an assistive multimodal
interface. In CHI '07 Extended Abstracts on Human
Factors in Computing Systems (San Jose, CA, USA, April
28 - May 03, 2007). CHI '07. ACM, New York, NY, 2675-
2680.

[27] Watchfire Corporation (2003), WebXACT, Retrieved
March 20, 2007, from http://webxact.watchfire.com/

[28] W3C (2006), Web Content Accessibility Guidelines
(WCAG). Retrieved, December 22, 2006, from
http://www.w3.org/WAI/intro/wcag.php

[29] Vanderheiden, G.C., and Henry, S.L., Everyone Interfaces
User Interfaces for All: Concepts, Methods, and Tools.
Edited by Constantine Stephanidis. Lawrence Erlbaum
associates, Publishers. Mahwah, New Jersey, 2001. Pg
115–13

